
Pergamon 
1. Appl. Maths Mechs, Vol. 58, No. 2, pp. 189-195,1994 

Copyright CI 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0021-892&94 S24.00+0.00 
9921-8928(94)EtM42-9 

PROPERTIES OF THE INVARIANT COMPONENTS 
OF THE WEYL TENSOR IMPLIED BY THE BIANCHI 

1DENTITIES”r 

L. I. SEDOV 

Moscow 

(Received 12 March 1993) 

For vacuum regions in pseudo-Riemannian spaces in finite or infinitely large volumes of*four- 

dimensional spaces, the Riemann tensor becomes the Weyl tensor. Based on the conditions of 

continuity for the space geometry, the form of the invariant components of the Weyl tensor, as 

functions of the coordinate arguments in the Fermi variables on canonical global time coordinate 

curves, is determined. With reference to a complete system of independent canonical invariants of the 

different types of Weyl tensor in four-dimensional spaces, the conditions of continuity are used to 

determine the form of these invariants as functions of the comoving individual Fermi coordinates at 

points of the pseudo-Riemannian spaces. 

In order to construct various particular exact solutions in connection with the definition of 
different kinds of pseudo-Riemannian spaces that contain empty volumes V,, the following 
partial differential tensor equations, which are direct corollaries of the Bianchi identities, must 
be satisfied in any system of coordinates inside V, 

Vi& - 1/2&fi) = 0, or Rii - lf2gi+t = TV ~0 (1) 

Hence R=O and R#=O. 
The definition of a vacuum requires that Tg = 0 in finite or infinite volumes V, of the 

Riemannian spaces. Though all of the ensuing theory was developed directly for a vacuum, for 
the Weyl tensor, it can easily be extended, to the case when TV = qij, where K is a constant, and 
the Gaussian curvature of the space R =-4~ is constant. When K= 0 the Riemann tensor is 
equal to the Weyl tensor, with Ruu = F&and q:k = 0. 

The construction proposed here to determine all possible solutions of system (1) is based on 
individualizing the points of the space, which are defined using a comoving system of coordin - 
ates g”, 2; for such a system the metric may always be defined, without loss of generality, as 
follows: 

ds2 =c~~T~ +2ga4(5a,r)d5ad~+g~(Sa,~)~adSB (2) 

where the functions g&r, z) are the components of the metric tensor which, in the case of the 
particular solutions sought here, are not defined uniquely but only up to a coordinate 
transformation. 

A metric of the form (2) may be associated with a family of world lines L of individual 
points, defined by 5” = const; the variable coordinate 7 is then a global proper time on each 
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line in L. On these lines ds’ =c2dz2, the four-dimensional velocity is ii= dsldz, and the 
absolute acceleration at each point of the world lines L is determined relative to the inertial 
tetrads with constant bases e’ = const by formulae of the type 

with CT’=>“, where the bases 3’ are the variable ~ontravar~ant basis vectors in comoving 
coordinates at each point of the family of lines L. 

We introduced the concept of the global time in Riemamrian spaces in [1, 21, where it was 
defined as a time coordinate z in a-comoving frame of reference; this is a direct generalization 
and analogue of the notion of absolute universal time in Newtonian continuum mechanics. 

The subsequent steps of the construction, aimed at obtaining solutions of the system of 
equations (l), involve working with variable tetrads 3’ at all points of the Ties L and 
intr~u~~g further inertial tetrads S with constant bases e’. Generally speaking, these constant 
bases will either be identical with 3i at a fixed instant of time, or their elements will be arbitrary 
vectors constant at all points of the space; in particular, they may be constant orthonormal 
bases, identical at fixed instants of time with variable and also with orthonormal canonical 
bases. In the general case the bases 3’ and ei are related by a ~a~for~tion X” = ST”@, kzY c3, 
z& where x”, z are the coordinates in the tetrads S 

It will be shown below that solutions of Rqs (1) exist in which the family of world lines is L, 
and a corresponding system of comoving coordinates, in which the individual points are 
named by equalities c =const(u). The curves L may be fiied fairly arbitrarily. In addition, 
however, in order to single out particular solutions one needs further data, which are 
foisted in terms of characteristic of the invariant parameters. 

We shall now proceed to determine such parameters and ascertain their properties, which 
are derived from the components of the corresponding Riemann tensors. 

In 1949 Petrov (see, for example, [3]) proposed to obtain fundamental solutions of Eqs (1) 
by introducing six-dimensional symmetric matrices K constructed from the real components of 
the Riemann tensor in four-dime~ional space-time in appropriate frames of reference 
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where N and N for solutions of Rqs (1) are three-d~en~o~l symmetric matrices of three 
possible types. In the canonical orthonormal tetrads for type q we have 

where h, = -(a, +i&) are characteristic invariants-the roots of the corresponding %ecular 
equation’” for K. The roots h, for given Weyl tensors may differ at different poirrts of the 
spaces. 
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It has been shown that for all three types 

al +a2+a3=--K,, PI + B2 + P3 = 0 (5) 

For type T,, which corresponds to the Weyl tensor, we have double roots: h, = h, and K = 0; 
in the canonical tetrads, along with the possible formulae (4), we may also have additional 
canonical formulae 

M= 0 -2a :+, 0” /I, N= 7 ; ;I 

0 0 a-p 

(6) 

For type T,, with triple roots h, =h, = h, =-~/3 and p, =0, there may also be, besides 
solutions with canonical matrices of types (4) and (6) solutions with canonical matrices 

-K/3 p 0 

M- p -K/3 0 , 

0 0 -K/3 

(7) 

where p denotes arbitrary non-zero constants. For any family of world lines L, the real 
numbers a,, l3, d an K corresponding to some solution of the equations in the canonical 
orthonormal tetrads S at isolated points may be arbitrary, provided they satisfy (5). 

If the Weyl tensors are known, the threedimensional part of the orientation of the canonical 
tetrads S on the world lines L may be determined algebraically from the matrices M and N in 
the six-dimensional notation for the matrix K. 

In the inverse problem-the construction of fields of Weyl tensors+anonical inertial 
tetrads S with bases e’ along the world lines L may be designated by introducing an additional 
element of freedom in the Weyl tensor to be determined, namely, the choice of the three- 
dimensional orientation of the bases $’ at the points of the lines L. 

The components W+, of the Weyl tensor for a family of arbitrarily chosen world lines L, in 
an appropriate globally defined comoving canonical frame of reference (2) with variables {“, 
T, may be calculated in the space in tetrads S* with bases 3’ and in the transformed inertial 
canonical bases e’ in the tetrads S. 

At each point of four-dimensional pseudo-Riemannian space, in the local comoving tetrads 
with basis vectors 3’ and in the inertial tetrads e’, we can write ds’ ai=dx’e. If 3i=ei, then 
&’ = &, but the bases 3, are variable both along a world line L and on making an infinitesimal 
transition to the points of a neighbouring world line L', while the inertial bases e, may be 
introduced locally at each point, by definition, as constant bases in the tetrads S, in agreement 
with the equalities 

d3i 14” =-r~(~‘,~)3~, dei ldx’ =O (8) 

An appropriate linear tran!formation with constant coefficients at each point of the space 
enables us to view the bases e, and e’ as the same orthonormal inertial tetrad, forming its 
“own” local non-holonomic frames of reference at all points of the volume V,. 

One can establish a correspondence, for the same coordinates, between points in curved pseudo- 
Riemannian spaces and in Minkowski space (when there is topological equivalence) with the same 
Cartesian bases e’ in the tetrads S but, of course, with different metrics. 

In the general case one can write the following equalities for Riemann tensors, and also for 
the components of the Weyl tensor, at each point of the space in the tetrad bases 3’ or e’ 
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The Bianchi identities, which express the condition of contend implied by the definitions of 
the Riemann tensors, may be written as follows in each of the tetrads 3’ and e’ 

(10) 

where V,, V,, V, are the symbols of the covariant derivatives in any systems of coordinates, 
and the subscripts set apart by commas denote partial derivatives with respect to the coor- 
dinates indexed 3, k and 1 in the tetrads S. 

Henceforth we will adhere to the assumption that 3’= e’ and that W&= W+k,, but the partial 
derivatives of these components with respect to the coordinates are different. At the same 
time, E!q. (10) is meaningful even when $#ei and W$+ W8k,. 

If the Bianchi identities are satisfied in the local inertial tetrad systems, then it is obvious 
from (10) that they will be satisfied in any basis-in particular, in the global variabies r, z and 
3’ at the points of the space. 

We will now consider extensives, made up of the above components W$ and wjU at the 
points of space, in tetrad coordinates r, T, 3’ and in coordinates x0, 2, e’ for the inertial 
tetrads S on L; these extensives wilI satisfy all the conditions for algebraic symmetry of the 
components of the Riemann and Weyl tensors, respectively. 

If the extensive of continuous functions eji additionally satisfies all the equalities (lo), 
which are the tetrad Bianchi relations, then the totality of Wo$ and W#, can obviously be 
treated as the components in Lagrange coordinates 5’ or in coordinates xi for the Weyl tensor 
in local coordinates at points xi for the inertial bases in the tetrads S. 

As an extensive WeH at each of the points y for the curvature teusor and Weyl tensor being 
constructed, one can take the cano~c~ elements of the matrix K, expressed in terms of the 
canonical elements of the three-dimensional matrices M and N, which in turn depend on types 
T,, T2 and q and are represented by formulae (4)-(6) in terms of the invariants a, and l3, in 
the tetrads S. 

For each given type, K is expressed in terms of M and N, hence also in terms of a, and p,, in 
the same way at all points of the space; but a, and g,, as functions of the Lagrange coordinates 
and in the corresponding tetrads S in variables x’ must satisfy not only (4)-(7), but also the 
Bianchi identities (10). 

We will now proceed to establish additional formulae, valid at each point of the space, which 
require the invariants 01, and p, as functions of x’ to satisfy the Bianchi conditions. Both the 
components I%$$ in the global coordinates c, ‘5 and the corresponding components W#, in the 
local inertial tetracls mtpt satisfy the Bianchi relations, taking into account transfo~ations 
from P, z variables to r, z variables. 

In the local orthonormal tetrads, comoving and canonical 3’, we also introduce inertial 
tetrads S with constant basis vectors e’ equal to 3’ . 

According to formulae (10) in the tetrads e’, differentiation with respect to xs in the tetrads 
S gives the Bianchi relations in the following form 

3 = 1, w,4,4,1 + %i41,1 + w,411,4 = 0 

s = 29 w,,,,, + fl442.1 + w,421,4 = ’ 

s = 3. w,,,,, + %i43,1 f Y431.4 = 0 
(11) 

s=4, Uf4t4.4 + h44,1+ ha.4 = 0 

When the derivatives of the extensives W,, in the bases e’ are determined, working in 
canonical tetrads in (lo), one can use the canonical formulae for the components WV,, 
expressed in terms of a, and B, as functions of xi. 

In the relations (11) for the components of the Weyl tensor in canonical form, allowance is 
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made for the fact that all the non-diagonal terms in M and N in the extensive wjk, at 
neighbouring points vanish (in TJ or are constants (in T2 and TJ. In the second and third 
equations of (ll), therefore, allowance must be made for the fact that, at all points of the space 
and in all types 

w1412.1 = w1421,4 = w1443,1 = w1431,4 = o (12) 

The first and fourth equations of (ll), in their exact form, must hold identically; we may 
therefore write 

W1414 = al& ~9 

In other words, it follows from (11) that the component IV,,,, may be any desired function - 
but of the variables z and x1 only. 

Similarly, differentiation of the other diagonal terms W,, and W,, yields the following 
equalities in the canonical tetrads S 

w1414 = al@ x’h w2424 = %2(% x2), w3434 = $6 x3) 

Now, using (5), we obtain a formula for the Weyl tensor 

adz, x1) + a-&, x2) + a3(z, x3)= 0 (13) 

It follows from this formula that on all the coordinate lines x1, when T = const, x2 = const, 
x3 = const, the only possible variable quantity is a&x'), but by (11) a, must be a constant, 
hence it is independent of x1. 

Similar conclusions follow from (13): a, and a, must be independent of x2 and x3. Conse- 
quently, the three invariants a,, a, and a, for the given family of world lines may depend only 
on the specific value of the appropriate global time z and the specific Weyl tensor under 
consideration, and moreover 

al(z)+ a2(z)+ a,(z)= 0 (14) 

We will now evaluate the canonical quantities B1, p2, /3,. We have 

s = l: w,423,1 + y431.2 + w,412,3 = ’ 

s = 2: 4423.2 + y432.2 + w422.3 = o 

s = 3: w423.3 + 4433.2 + q432.3 = ’ 

s = 4z w423.4 + w,434,2 + 4442.3 = o 

Hence, since 

w1431.2 = w1412.3 = w1434.2 = w1442.3 = 0 

we conclude, using equations analogous to (15) for W,,, and WB12, that 

WI423 = h(-& 8, w2431 = ft#, x1)v w3412 = flS<x ‘9 x2) (16) 

By (5) and (7), the Weyl tensor in the inertial tetrad S must also satisfy the equality 

P@, 9) + &(x3, X9 + P& l, x2> = 0 (17) 

For Weyl tensors of type D, with metrics corresponding to equal roots & = h,, it must also be true that 
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gz =&. In such cases, it follows immediately from (17) in the variables x1, ~8, x3 that j3, =-2j3, =const. 
Hence one easily concludes that for different Kerr solutions with fixed families of world lines I,, namely, 
circles with their centres on the axis of symmetry, the invariants g, may be different constants on the 
same orbital circle, with similar formulae for the metrics in the comovmg Lagrange systems. 

x1 
Formula (17) enables further simplifications to be made. Differentiating (17) with respect to 
we obtain 

Hence, differentiating with respect to x3, we obtain 

and therefore p2 = I + (p(x3). Similarly one obtains p3 = w(n’) + f(x’) and /3r = g(x”) +h(x3), 
By (17) pl, p2 and p3 may be converted to the form 

where p10 are scalar constants on the world lines of L, equal to the values of p,(y, 2) 
corresponding at the relevant point of space C to the coordinates of the centre in the inertial 
tetrad. 

Thus, the solutions to problems involving the determination of different Weyl tensors may 
be expressed in terms of functions that can be selected arbitrarily for a family of comoving 
world lines L with three-dimensional canonical tetrads ea of scalars h,(r, 2) = -(a, + is,) and, 
in addition, with fixed particular examples of Petrov’s matrices K for types T,, T2 and T3. (The 
corresponding Weyl tensor depends on the system of canonical inertial tetrads e’ at points on 
the world lines of the family L.) 

The rest of the theory consists in computing global functions for the components of the 
metric g&*, 2) in comoving coordinates, containing additional arbitrary elements because of 
possible coordinate transformations. 

The following result is obvious in the context of the theory presently under discussion. If all 
the invariants a, and l3, are given as arbitrary constants, independently of the coordinates of 
the points of the space, except that they satisfy (5) then one obtains the Weyl tensor in the 
appropriate comoving Lagrange system of coordinates r, 2. 

In view of our previous conclusions, it is obvious that in this situation, in type T,, i.e. in the 
case of double roots, such as 01~ = a, and p2 = p3 when p = const, conditions (5) and (14) take 
on a simpler but similar form, while in type T3 the Bianchi relations become identities, since all 
the components of the RiemaM tensor in the canonical matrix K are constant. 

In type N, when h, = 5, = h, = 0 with p = 1, formulae (6) are true with Q, = 0 at each point of 
the space N. Therefore the corresponding components of the Weyl tensor in the canonical 
matrices will always satisfy the Bianchi identities. Consequently, one obtains a corresponding 
formula (6) for the components of the Weyl tensor in canonical systems. 

Hence, the fundamental problems in constructing Riemannian spaces in empty volumes 
involve the investigation of Weyl tensors in comoving coordinates as carriers, in the sense of 
the general theory of relativity, of the characteristic properties of gravitational phenomena in 
vacuum regions. In the general case, however, the resulting set of all possible metrics such that 
Rv=O or $ =-q,,, and the corresponding spaces, are suitable for a gravitational theory 
involving additional conditions and restrictions. 

If the problem of determining the components of the metric tensor grl and the Weyl tensor 
W,,, in the appropriate coordinates has been solved, then the solution as viewed by any other 
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given observer in the space may be obtained by carrying out a coordinate transformation from 
the computed solution in the comoving frame to the observer’s frame, using an inertial 
navigational algori~m. An account of the computations methods of inertial navigation may 
be found in [4]. 

The problem of choosing a particular frame of reference is as a rule not trivial in theories 
that work with canonical and local non-holonomic inertial frames; this point is of fundamental 
importance in applications. 

The work reported here was supported by the Russian Fund for Rundamental Research (93- 
013-17341). 
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